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EXAMPLE 1.1 Different open-loop responses
Consider systems with the open-loop transfer functions

1
Gols) = ——
ols) (s + 1}(s + a)
where a = —0.01, 0, and 0.01. The dynamics of these processes are gquite differ-
ent. as is illustrated in Fig., 1. 4(a). Notice that the responses are significantly
different. The system with & = .01 is stable: the others are unstable. The ini-

tial parts of the step responses, however, are very similar for all systems. The
closed-loop systems obtained by introducing the proportional feedback with
unit gain, that is, « = 1, — w, give the step responses shown in Fig. 1.4(b).
Notice that the responses of the closed-loop systems are wvirtually identical.
Some insight is obtained from the frequency responses. Bode diagrams for the
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Figure 1.4 (a) Open-loop unit step responses for the process in Example 1.1
withh @ = —0.01, 0, and 0.01. (b) Closed-loop step respons for the same
system, with the feedback w, — y. Notice the difference in time scales.
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Figure 1.5 (a) Open-loop and (b} closed-loop Bode diagrams for the process
in Example 1.1.

14




EXAMPLE 1.2  Similar open-loop responses
Consider systems with the open-loop transfer functions
400(1 - sT')
Gols) = ——————=— =7
o8) = )5 4 20)(1 + T5)
with T = 0, 0.015, and 0.03. The open-loop step responses are shown in
Fig. 1.6(a). Figure 1.6(b) shows the step responses for the closed-loop systems

obtained with the feedback u = u. — y. Notice that the open-loop responses

Output ¥
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unit step responses for the process in Example 1.2

Figure 1.6 (a) Open-loop
(b) Closed-loop step responses for the same

with T = 0, 0.015, and 0.03
system, with the feedback u = 1, — . Notice the difference in time scales. 15
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Figure 1.7 Bode dingrams for the process in Example 1.2. (a) The open-loop

system: (b) The closed-loop system.




Nonlinear Actuators

A very common source of variations is that actuators, like valves, have a
nonlinear characteristic. This may create difficulties, which are illustrated by
the following example.

EXAMPLE 1.4 Nonlinear valve

A simple feedback loop with a Proportional and Integrating (PI) controller,
a nonlinear valve, and a process is shown in Fig. 1.8. Let the static valve
characteristic be

v=flu) =u’ uz0

Linearizing the system around a steady-state operating point shows that the
incremental gain of the valve is f'(u), and hence the loop gain is proportional
to f'(u). The system can perform well at one operating level and poorly at
another. This is illustrated by the step responses in Fig. 1.9, The controller is
tuned to give a good response at low values of the operating level. For higer
values of the operating level the closed-loop system even becomes unstable.
One way to handle this type of problem is to feed the control signal « through
an inverse of the nonlinearity of the valve. It is often sufficient to use a fairly
crude approximation (see Example 9.1). This can be interpreted as a special
case of gain scheduling, which is treated in detail in Chapter 9. [m]

PI controller Valve Process

. f 1) u v ¥y
K{l+EJ fi Gyls)

]
[

Figure 1.8 Block diagram of a flow contral loop with a PI controller and a
nonlinear valve.
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Figure 1.9 Step responses for PI control of the simple flow loop in Ex-
ample 1.4 at different operating levels. The parameters of the PI controller
are K = 015, T, = 1. The process characteristics are f(r¢) = u* and

Gyls) = 1/(s + 1)°.
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Flow and Speed Variations

Systems with flows through pipes and tanks are common in process control
The flows are often closely related to the production rate. Process dynamics
thus change when the production rate changes, and a controller that is well
tuned for one production rate will not necessarily work well for other rates
A simple example illustrates what may happen.

EXAMPLE 1.5  Concentration control

Consider concentration control for a fluid that flows through a pipe, with no
mixing, and through a tank, with perfect mixing. A schematic diagram of the
process is shown in Fig. 1.10. The concentration at the inlet of the pipe is ¢;,.
Let the pipe volume be V; and let the tank volume be V,,. Furthermore, let the
flow be ¢ and let the coneentration in the tank and at the outlet be ¢. A mass
balance gives

delt)

vm
dt

= q(t) (einlt = 1) = clt)) (1.3)

where
= Vy/alt)

19

Figure 1.10 Schematic diagram of a concentration control system.

Introduce
T = Vi /q(t) (1.4)

For a fixed flow, that is, when g(¢) is constant, the process has the transfer
function

e
1+sT
The dynamics are characterized by a time delay and first-order dynamics. The
time constant 7 and the time delay t are inversely proportional to the flow g.

The closed-loop system is as in Fig. 1.8 with f(-) = 1 and Gy(s) given
by Eq. (1.5). A controller will first be designed for the nominal case, which
corresponds to ¢ = 1, T = 1, and 7=1. A PI controller with gain K = 0.5 and
integration time 7, = 1.1 gives a closed-loop system with good performance
in this case. Figure 1.11 shows the step responses of the closed-loop system
for different flows and the corresponding control actions. The overshoot will
increase with decreasing flows, and the system will become sluggish when the
flow increases. For safe operation it is thus good practice to tune the controller
at the lowest flow. Figure 1.11 shows that the system can easily cope with a
flow change of £10% but that the performance deteriorates severely when the
flow changes by a factor of 2, ul

Gols) = (15)

Variations in speed give rise to similar problems. This happens for example
in rolling mills and paper machines.
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l‘?igurc L1l Change in reference value for different flows for the system in
Example 1.5. (a) Output ¢ and reference ¢, coneentration, (b) control signal,
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x=ax+u Scaar Plant with unknown parameter
If an upper bound is known, @ > a|
= U =—kx sathilizes the plant withk >a
If a>k >0 theclosed loop plant will be unstable

If an upper is not known, then NO linear controller can
stabilize the plant: A practical solution is gain adaptation

u=—kx, k=x* isthe Stabilizing Controller
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* Identifier-Based Adaptive Control

* Non-Identifier-Based Adaptive Control
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* Identifier-Based Adaptive Control
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Figure 1.21 Gain scheduling is an important ingredient in modern Hight
control systems. (By courtesy of Nawrocki Stock Photo, Inc., Neil Hargreave. )
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1. Adaptive Control, K. J. Astrom, Wesley, 1995.

Adaptive Filtering, Prediction and Control, G. C.
Goodwin and K. S. Sin, Prentice-Hall, 1984.

Adaptive Control Tutorial, P. loannou, B. Fidan, SIAM
Advances in Design and Control, 2006
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Springer, 2006.
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