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EXAMPLE 5.1 Adaptation of a feedforward gain

Consider the problem of adjusting a feedforward gain. In this problem it is
assumed that the process 1s linear with the transfer function kG {(s), where G(s)
is known and £ is an unknown parameter. The underlying design problem is
to find a feedforward controller that gives a svstem with the transfer funetion
G i) = koG(s), where kg iz a given constant. With the feedforward controller

u = Bu,

where u is the control signal and u, the command signal, the transfer function
from command signal to the output becomes #%G(s). This transfer function is
equal to (7, (s) if the parameter & is chosen to be
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Figure 5.2 Block diagram of an MRAS for adjustment of a feedforward gain
based on the MIT rule.

We will now use the MIT rule to obtain a method for adjusting the parameter
& when k is not known. The error is
e=y—yn = kG(p)u, — kyG(p)u.

where . is the command signal, y,, is the model output, v is the process output,
# is the adjustable parameter, and p = d/dt is the differential operator. The
sensitivity derivative is given by

ile k
98 = kG (plu, = B
The MIT rule then gives the following adaptation law:
de k
S e 5.5
dt ¥ vme ¥¥me (5.5)

where y = y'k/ky has been introduced instead of y'. Notice that to have the
correct sign of y, it is necessary to know the sign of k. Equation (5.5) gives the
law for adjusting the parameter. A block diagram of the system is shown in
Fig. 5.2.

The properties of the system can be illustrated by simulation. Figure 5.3
shows a simulation when the system has the transfer function

1
Gls) - s+1
The input . is a sinusoid with frequency 1 rad/s, and the parameter values
are k = 1 and ky = 2. Figure 5.3 shows that the parameter converges toward
the correct value reasonably fast when the adaptation gain is y = 1 and that
the process output approaches the model output. Figure 5.3 also shows that
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Figure 5.3 Simulation of an MRAS for adjusting a feedforward gain, The
process (solid line) and the model (dashed line) outputs are shown in the
upper graph for 7 = 1. The controller parameter is shown in the lower graph
when the adaptation gain y has the values 0.5, 1, and 2.

the convergence rate depends on the adaptation gain. It is thus important
to know a reasonable value of this parameter. Intuitively, we may expect that
parameters converge slowly for small y and that the convergence rate increases
with y. Simulation experiments indicate that this is true for small values of ¥
but also that the behavior is quite unpredictable for large 7. n]




EXAMPLE 52  MRAS for a first-order system

Consider a system deseribed by the model
dy
juc. A 5
r ay + bu (5.6)

where u is the control variable and y is the measured output. Assume that we
want to obtain a closed-loop system described by

d ;
{;;” =~ Y + butte
Let the controller be given by
u(t) = Oru.(t) — B23(t) (5.7)
The controller has two parameters. If they are chosen to be
b,
b =0y =
Ay —a (5.8)
o = 0} b

the input-output relations of the system and the model are the same. This is
called perfect model-following.
To apply the MIT rule, introduce the error
e =y Ym
where y denotes the output of the closed-loop system. It follows from Eqs. (5.6)
and (5.7) that
b,y .
—
pra+bd
where p = d/dt is the differential operator. The notation used is discussed in
Section 1.5. The sensitivity derivatives are obtained by taking partial deriva-
tives with respect to the controller parameters ¢y and 0s:
de b
YN up
a6, p+a+ by

y=

e b0, b

=—— U, = ¥
a6y (p+a+bgy)2 ™" p+a+biy”

These formulas cannot be used directly because the process parameters a and

b are not known. Approximations are therefore required. One possible approx-

imation is based on the observation that p + a + b0 = p + a,, when the

Figure 5.4 Block diagram of a model-reference controller for a first-order
process.

parameters give perfect model-following. We will therefore use the approxima-
tion

pra+bl=p+ay

which will be reasonable when parameters are close to their correct values.
With this approximation we get the following equations for updating the con-

troller parameters:
déy _ | ( an j?
dt 7 pray |

dé; [

dr /(p+a,,,">9
In these equations we have combined parameters b and @, with the adaptation
gain 7', since they appear as the product y'b/a,,. The sign of parameter b
must be known to have the correct sign of y. Notice that the filter has also
heen normalized so that its steadv-state sain is unity,

(5.9)




The adaptive controller is a dynamical system with five stale var.la_ll!es
that can be chosen to be the model output, the parameters, and the sensitivity
derivatives. A block diagram of the system is shown in Fig. 5.4. The behavior
of the system is now illustrated by a simulation. The parameters are ch()s,ic-n
to be a = 1.h =05, and a, = b, = 2, the input signal is a square wave w1th‘
amplitude 1, and y = 1. Figure 5.5 shows the results of a simulation._ Flgur_e 5.6
shows the parameter estimates for different values of the adaptation gain y.
Notice that the parameters change most when the command signal changes
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Figure 5.5 Simulation of the system in Example 5.2 using an MRAS, The
parameter values area = 1, b = 0.5, 4, = b, = 2, and ¥y=1

and that the parameters converge very slowly. For ¥ = 1, the value used in
Fig. 5.5, the parameters have the values 8, = 3.2 and 6y = 1.2 at time £ = 100.
These values are far from the correct values 87 = 4 and 6y = 2. However,
the parameters will converge to the true values with increasing time. The
convergence rate increases with increasing y, as is shown in Fig. 5.6.

The fact that the control is quite good even at time £ = 10 is a reflection of
the fact that the parameter estimates are related to each other in a very special
way, although they are quite far from their true values. This is illustrated in
Fig. 5.7, where parameter 6, is plotted as a function of 8; for a simulation
with a duration of 500 time units, Figure 5.7 shows that parameters do indeed
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Figure 5.6 Controller parameters &, and €, for the system in Example 5.2
when y = 0.2, 1 and 5.
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Figure 5.7 Relation between controller parameters 8, and . when the
system in Example 5.2 is simulated for 500 time units. The dashed line shows
the line 8, = 8, — a/b. The dot indicates the convergence point.

approach their correct values as time increases. The parameter estimates
quickly approach the line @, = 8, —a/b. This line represents parameter values
such that the closed-loop system has eorrect steady-state gain. O
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EXAMPLE 54  Choice of adaptation gain

Consider the system in Example 5.1 with G(s) = 1/(s + 1), £ = 1, and &, = 2.
Assume that the reference signal has unit amplitude. Equation (5.13) then

becomes

s+ pu=5"+s+ Yymitek = 0

A reasonable choice is to make y¥) ulk = 1. If we disregard the transients, the
average value of y,,u. is 2. This gives ¥ = 0.5, which is the value used in one

of the simulations in Fig. 5.3.

a

EXAMPLE 55  Stability depends on the signal amplitudes
Consider the system in Example 5.1. Let the transfer function G be given by

G(s) ;
8= ———
g s2 + @18 + ag

Equation (5.13) then becomes

3

s +a.132+ags+y =0

where i = yy5 u’k. The equation has all its roots in the left half-plane if
Yymlek < aras (5.15)

Since this inequality involves the magnitude of the command signal, it may
happen that the equilibrium solution corresponding to one command signal is
stable and the solution corresponding to another command signal is unstable.
This is illustrated by the simulation results shown in Fig. 5.8, where parame-
ters are chosen so that k£ = a; = @2 = 1. In the simulation the adaptation rate
y was adjusted to give a good response when u. is a square wave with unit
amplitude. In this case we have u? = y? = 1, and inequality (5.15) gives the
stahility condition y < 1. A reasonable value of 7 is ¥ = 0.1, which was used
in the simulation. Figure 5.8 shows clearly that the convergence rate depends
on the magnitude of the command signal. Notice that the solution is unstable
when the amplitude of u,. is 3.5. The approximate model predicts instability
for u. larger than 3.16. Also notice that the response is intolerably slow for
low amplitudes of u,. [m]
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Figure 5.8 Simulation of the MRAS in Example 5.5. The command signal
is a square wave with the amplitude (a) 0.1, (b} 1, and (¢} 3.5. The model
output v, is a dashed line; the process output is a solid line. The following
parameters are used: k = a, = a, = 8 = 1, and y =01,
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Figure 5.9 Simulation of the MRAS in Example 5.5 with the normalized
MIT rule. The command signal is a square wave with the amplitude {a) 0.1,
{b) 1, and (c) 3.5. Compare with Fig. 5.8. The model output y,, is a dashed
line; the process output is a solid line, The parameters used are kb = a; =
@, = 8" =1, =000,andy =01
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Lyapunov’s Theory for Time-invariant Systems

Fundamental contributions to the stability theory for nonlinear systems were
made by the Russian mathematician Lyapunov in the end of the nineteenth
century. Lyapunov investigated the nonlinear differential equation
dx
dt
Since f{0) = 0, the equation has the solution x(f) =

: ) > ‘ = (. To guarantee that a
solution exists and is unique, it is necessary to make some assumptions about

=fla)  fl0)=0 (5.17)

[(x). A sufficient assumption is that f(x) is locally Lipschitz, that is,

[£(x) (¥

in the neighborhood of the origin, Lyapunev was interested in investigating
whether the solution of Eq. (5.17) is stable with respect to perturbations. For
this purpose he introduced the following stability concept.

< Lijx - vl L>0

DEFINITION 51 Lyapunov stability
The solution x(¢) = 0 to the differential equation (5.17) is called stable if for
given £ > 0 there exists a number §(£) > 0 such that all solutions with initial
conditions
Jle(o)l] < &

have the property

lx(@)]| < & for 0 =¢<ac (5.18)
The solution is unstable if it is not stable. The solution is asymptotically stable

if it is stable and & can be found such that all solutions with [|x(0)]] < & have
the property that [|x(2)|| = 0 as t —» . o

Remark 1. If the solution is asymptotically stable for any initial value, then
it is said to be globally asymptotically stable.

Remark 2. Notice that Lyapunov stability refers to stability of a particular
solution and not to the differential equation. m]

DEFINITION 52 Positive definite and semidefinite functions

A continuously differentiable function V : B — R is called positive definite in

a region U — R" contaiming the origin if

1. V{0y=20

2. Vix)>0. xelUandx#0

A function is called positive semidefinite if Condition 2 is replaced by V(x) > 0.
a

X

Vix)=const

Figure 5.10 Illustration of Lyapunov’s method for in vestigating stahility.

16



THEOREM 5.1 Lyapunov's stability theorem: time-invariant systems

If there exists a function V : R* — R that is positive definite such that its
derivative along the solution of Eq. {(5.17),

dv _avT dx  ovT | i
T @ e [W =W (5.19)

is negative semidefinite, then the solution x(f) = 0 to Bq. (5.17) is stable. If
dV fdt is negative definite, then the solution is also asymptotically stable. The
function V' is called a Lyapunov funetion for the system (5.17).

Moreover if

dVv
b <0 and Vi(x} o0 when [ —

then Lhe solution is globally asymptotically stable.
Proof: Given & > 0 such that {x|||x|| < £} < U, determine ¢ and & such that
# = min V(x) = max V(x) (5.20)
|lxll=¢ |xf| =&
Consider initial conditions such that
s} < &
Since V' is positive definite, it then follows from Definition 5.2 that
Vix(0) < ¢

To prove that inequality (5.18) holds, we praceed by contradiction. Assume that
f1 is the smallest value such that (|x(¢,)|| = &. It follows from Eq. (5.20) that

V(x(t) 2 ¢

Furthermore,
t £y
p r
V(x(t)) = V{x(0)) +/ ff;; dt = V (x(0)} fW {x(s)) ds (5.21)
I ¢ o
Since W{x) is positive semidefinite, it follows that
Vix(t)) € V{(x(0)) < ¢

and we have thus obtained a contradiction and it can be cqncludvd Lh:_lt
|lx(2)]| < & for all ¢, which by Definition 5.1 implies that the solution x(t) = (‘l is
stable. To prove asymptotic stability, we notice that it follows from Eq. 5.21)
that

H
0< [ W (x(s)) ds = V (x(0)) — V (x(1)) < ¢
0

Since W (x) and x(f) are continuous, it then follows that
flim Wix(ty) =0
If W{x) is positive definite, this implies that x{t} — 0 as t — ~. [}

Remark. Notice that it follows from the proof that Vif the derivative of the
Lyapunov function is negative semidefinite, the solution converges to the set
yapu : *
{x| W(x) = 0}.

17



THEOREM 52 Lyapunov functions for linear systems
Assume that the linear system

— = Ax (5.22)

is asymptotically stable. Then for each symmetric positive definite matrix @
there exists a unique symmetrie positive definite matrix P such that

ATP+PA=-Q (5.23)

Furthermore, the function
Vix) = x"Px (5.24)
is a Lyapunov function for Eq. (5.22).
Proof: Let @ be a symmetric positive definite matrix. Define
i
P(t) = /('Ar"_”Q?"’“ * ds
-fJ
The mat,rjx P is symmetric and positive definite because an integral of positive
definite matrices is positive definite. The matrix P also satisfies
AP pas e
dt
Since the matrix A is stable, the limit

P, = lim P{t)
b

exists, "l:his matms satisfies Eq. (5.23). It can also be shown that the solution
to Eq. (5.23) is unique, which completes the argument. [m]

Lyapunov Theory for Time-variable Systems
We now consider time-variable differential equations of the type

i
dt

The origin is an equilibrium point for Eq. (5.25) if f(0.£) = 0 Vit = 0, It is
assumed that [ is such that solutions exist for all ¢ = #. To guarantee this,
it is assumed that f is piecewise continuous in { and locally Lipschitz in x in
a neighborhood of x(t) = 0. We now investigate the stability of the solution
x(t) =0

In the time-varying case the solution will depend on ¢ as well as on the
starting time #;. This implies that the bound & in Definition 5.1 will depend
on ¢ and to. The definition on stability can be refined to give uniform stability
properties with respect to the initial time. We have the following definition.

= fla.t) (5.25)

DEFINITION 53 Uniform Lyapunov stability
The solution x{t) = 0 of Eq. (5.25) 1s uniformly stable if for £ > 0 there exists

a number §(e) > 0, independent of #g, such that

llx(to)]] < & = [|xit)l] < € Wizt =0

The solution is uniformly asymptotically stable if it 1s uniformly stable and
there is ¢ > 0, independent of ¢y, such that x(f) - 0ast — o0, uniformly in
ty, for all ||x{ty)]] < c. m}

18



DEFINITION 54 Class K function o
A continuous function a: [0.a) — [0, is said to belong to clgss Kifit is
strictly increasing and a{0) = 0. It is said to belong to class K. ife = > and

[m]
@ir) — o0 as r— o

For time-varying systems the following stability theorem can now be
stated.

THEOREM 53 Lyapunov's stability theorem: Time-varying systems
Let x = 0 be an equilibrium point for Eq. (5.25) and D = {x € R" |xll < rh.
Let V be a continuously differentiable function such that

ay(|lx]) = Vixt) € oglf|xi]) (5.26)

% = d% + c?)‘: flaty < —as(llx|))
P

for ¥t = 0, where ¢y, x5, and @y are class K functions. Then x = 0 is uniformly
asymplotically stable.

Proof: A proof can be found in Khalil (1992). 0

Remark 1. The derivative of V along the trajectories of Eq. (5.25) is now
given hy
dv av . av

dt at - dx

Remark 2. A function V (x.1) satisfying the left inequality of (5.26) is said to
be positive definite. A function satisfying the right inequality of (5.26) is said
to be decrescent.

flx.t)

Remark 3. To show stability for time-variable systems, it is necessary to
bound the function V(x.¢) by a function that doesn’t depend on ¢. o

When using Lyapunov theory on adaptive control problems, we often find
that dV/dt only is negative semidefinite, This implies that additional con-
ditions must be imposed on the system., The following lemma gives a useful
result.

LEMMA 51 Barbalat’s lemma

If g is a real function of a real variable ¢, defined and uniformly continuous
for ¢ = 0, and if the limit of the integral

/g(s) ds
il
as ¢ tends to infinity exists and is a finite number, then
}im gty =0 [m]
Remark, A consequence of Barbalal's lemma is that if g e Ly and dg/df is
bounded, then
limg(f) = 0 o

e

When applying Lyapunov theory to an adaptive control problem, we get
a time derivative of the Lyapunov function ¥, which depends on the control
signal and other signals in the system. If these signals are bounded, Lemma 5.1
and the remark that follows can be used on dV /dt to prove stability. We have
the following theorem.

THEOREM 54 Boundedness and convergence set

Let D = {x € R"||lx]| < r} and suppose that f(x,¢) is locally Lipschitz on
D x[0,5¢). Let V he a eontinuously differentiable function such that

aifl|x]l) € Vix,t) < o))

19



and wvooov  av

[# 3% i [

M ) -Wix) =0

@ = o T [®Y (=)
Wi = 0, ¥x e D, where «; and o are class K functions defined on [0,r)
and W(x) is continuous on D. Further, it is assumed that dV /dt is uniformly
continuous in &,

Then all solutions to Eq. (5.25) with [lx(t)l] < @3 (@, (r)) are bounded and
satisfy
Wix(t)y—0 as [ —

Moreover, if all the assumptions hold globally and ¢, belongs to class K, the
statement is true for all x(ty) € R". 0o
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Figure 5.11 Block diagram of an MRAS based on Lyapunov theary for a

first-order system. Compare with the controllor hased on the MIT rule for the
same system in Fig, 5.4,

@)

T
20 4} 6} 80 10
Time

T T T T T
20 40 60 80 1600
Time

Figure 5.12 Simulation of the system in Example 5.7 using an adaptive
controller based on Lyapunov theory. The parameter values area = 1, b = (1.5,

a, = b,

2, and y = 1. (a] Process (solid line) and model {dashed line)

outputs. (b) Control signal.
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Figure 5.13 Controller parameters #, and 6, for the system in Example 5.7
when y = 0.2, 1, and 5. The dotted lines are the parameters obtained with
the MIT rule. Compare Fig, 5.6.
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EXAMPLE 58  Linear systems with signals in Ly,

Let the signal space be Ly,. Consider a linear system with the transfer function
G(s). Assume that G(s) has no poles in the closed right half-plane and that
the system is initially at rest. Let i be the input and y the output, and let
7 and Y be the corresponding Laplace transforms. It follows from Parseval's
theorem, Theorem 2.8, that

o S Lo/~ . .
livlf? = /U ¥ (t)dt = 2r / ) Yi{iw)Y(-iw) dw
| . ) . .
= o / i Glim)U(iw)G(~ienU (- i) do
s 1 &
< max [G(iw)|? - / Ulio)U(~iw) de
@ 2]3_ -
- rnax|(x'[iw)\2/ u?(1) dt = max|G (i) - ulf*
o o o
Hence
Il < max |G (i) - fu|
The gain is thus less than max [Glim)|. We get equality in the above equation
if # is a sinusoid with the frequency that maximizes |G (iew})|. However, such
a signal is not in Ls,. The value of [l¥ll can be made arbitrarily close to
max |G (iw)| with a truncated sinugoid in Ly, by making 7 sufficiently large,
The gain of the system is thus
7(G) = max |Glim)| (5.41)
m]

EXAMPLE 5.9  Linear system with sup norm
Consider a stable linear system with impulse response % (f). We have

¥(t) = /-\r’r{r}u{z T)dr
S

Using the sup norm, we get

l¥(8)] = '/ h(tyult — 1) dr| < sup Ju(1)| / Ih(t)| dr
|0 | ¢ Ju

This gives
sup|y(t)] < ¥(G)- sup lu(¢)]
¢ ¢

where the gain of the system is given by
"
YiG) = / h(z)| dr
do

If we let wg = max, |u(f)|, the maximum is assumed for the signal
w(s) = ug sign (h(t — s))

However, this signal is not in Ls.. Since the system is stable, we can get
arbitrarily close with a signal in L,, by making T sufficiently large. o
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Characterizing Positive Real Transfer Functions

THECQREM 2
A rational transfer function G (s) with real coefficients is PR if
and only if the following conditions hold.

« (i) The function has no poles in the right half-plane.

« (i) If the function has poles on the imaginary axis or at
infinity, they are simple poles with positive residues.

that is,
Re (G(iwm)) = 0

A transfer function is SPR If conditions (iy and (iii) hold and

poles or zeros on the imaginary axis. O

Examples in Passivity
{vluy= lw / Re {G(im)} U(ie)U (—iw) dw
i

« Positive real (PR) if Re G (im) =

« |nput strictly passive (ISP If Re Giim) =& = 0,

« Cutput stricly passive (OSP) if Re G (im) = |G {im)|*;
(s)=s5+1SFR and ISF not OSP

(7{s) = =& SPR and OSP not ISP
(s)
(s)

=L 0sP and ISP not OSP

[a+1}*

; =% PR not SPR, OPS or ISP
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Nonlinear Static Systems v = f(u)

(yluy = /ﬂ Flatt))u () dt

e Passive if x/(x) = 0
 Input strictly passive (ISP) if xf (x) = &§|x|*
« DUtput strictly passive if

I .If |:|.:| 2 3 .If 2 |:.'l.':|

Geometric Interpretation

Example
e [(x) = x + 27 input strictly passive
¢ [{0)=x/(1+|x|) output strictly passive.
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Relationships: Small Gain vs. Passivity Theorems
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MRAS iis; ®

The equations needed to implement the general MRAS can now be summa-
rized:
B,

.}rm = — Uy
3]

ep = ge = 5 (y—ym)

P
1 _
n= (—ie—gﬂfﬂ)
1
. by@
AT A,
d_a 1 {.‘*
i
u=-0"(Pp)
Maodel

Filter
I

Figure 5.21 Block diagram of a model-reference adaptive system for a SISO
system.
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having the same structure, Tt therefore suffices to discuss one part. Consider,
for example, how to generate ¢, and P, g, where

1 13" -
Pip, = (‘UPQ u .. qu) = (%1 ... ;)" =27

k1 1
@y = (EP u...ﬁu)

where P = PPy and k = deg R = deg Ps.
Let the polynomials P, and P, be

and

Pi=p"+ap"l+ - t+a,

Py=pt e pipt e By

We also assume that deg Py > deg Py. The vectors x and @, can then be realized
as follows:

=B Be . By P 1
dy 10 00 0
T = . x + u
«
0 0 1 0 0
—tr @z ... —@y_ —U, 1
d= 1 0 0 0 0
7 S o [E2
0 0 1 0 0

where x, = 1/P, - u is the last element of the x vector. The elements of @,
are the k last clements of the state vector z. Furthermore, 1/P; - u can also be
obtained from the generation of ¢, and Pip,. To generate the full vectors ¢
and P, ¢, we thus need three realizations of the transfer functions P, and Ps.
The block labeled “Filter” in Fig. 5.21 represents these systems.
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Compare STR and MRAS

MREAS
ad
Tt - TerE
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Direct STR r
y(t) = o5 (t—do) 8
£(f) = y(t) - =y(t) — ¢f (t—da)B(t — 1)
o(f) = 8t — 1) + P(t)pf (f —do) &(t)
Residual

e(B)= ()= ¥i)= y(0) — yult) + yml[E) — ()
= e(t) +n(t)
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