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Abstract: Model predictive control (MPC) is an effective control strategy in the presence of system constraints. The successful
implementation of MPC in practical applications requires appropriate tuning of the controller parameters. An analytical tuning
strategy for MPC of first-order plus dead time (FOPDT) systems is presented when the constraints are inactive. The available
tuning methods are generally based on the user’s experience and experimental results. Some tuning methods lead to a complex
optimisation problem that provides numerical results for the controller parameters. On the other hand, many industrial plants
can be effectively described by FOPDT models, and this model is therefore used to derive analytical results for the MPC
tuning in a pole placement framework. Then, the issues of closed-loop stability and possible achievable performance are
addressed. In the case of no active constraints, it is shown that for the FOPDT models, control horizons subsequent to two do
not improve the achievable performance and control horizon of two provides the maximum achievable performance. Then,
MPC tuning for higher order plants approximated by FOPDT models is considered. Finally, simulation results are employed
to show the effectiveness of the proposed tuning formulas.
1 Introduction

Model predictive control (MPC) is widely used in many
advanced process control systems [1–3]. The ability of MPC
in constraint handling is well known, and this capability
makes it more effective in real applications [4].

MPC is a model-based control strategy and model com-
plexity substantially increases its computational burden,
which is a key deterrent factor in many practical applica-
tions. However, many industrial processes can be sufficiently
described by first-order plus dead time (FOPDT) models [5].
Hence, this model is used to analyse the MPC closed-loop
behaviour and leads to effective tuning formulas.

MPC has several tuning parameters that must be appropri-
ately tuned for a competent closed-loop control in practical
applications. For a typical MPC, conventional tuning param-
eters include the prediction and control horizons and the
weighted matrices used in the cost function. These parame-
ters can significantly influence the closed-loop performance,
stability and robustness characteristics and are therefore
extensively studied in many research papers [6, 7]. How-
ever, owing to the complex inter-relations between the
MPC and the process parameters and a desired closed-
loop stability and performance characteristics, the tuning
procedure is an intricate problem and active constraints sub-
stantially complicates this problem to the point that only
trial and error methods are available for MPC tuning. In
a general classification for no active constraints, different
tuning approaches can be grouped as the analytical-based
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and the numerical-based approaches. Owing to the prob-
lem complexity, there are limited analytical results in this
area. Analytical equations for tuning parameters of dynamic
matrix control (DMC) based on the FOPDT model approx-
imation can be found in [8]. In [8], a weighting factor is
tuned to avoid singularity in the control signal calculation,
but closed-loop performance is not considered in this formu-
lation. In [9], by using robust performance number, a tuning
procedure for MPC is developed, which is applicable to
multivariable non-minimum phase plants. An analytical for-
mulation for DMC tuning using some practical approaches
is presented in [10]. However, based on the results in [8], the
formula can lead to erroneous results for different open-loop
dc gains. An extension of the modified generalised predic-
tive control algorithm and a tuning strategy for the plants
described by the second-order plus dead time (SOPDT)
models are developed in [11]. Tuning equations for DMC
parameters are developed in [12] based on the application
of analysis of variance and non-linear regression analysis
for FOPDT process models. Although these results provide
closed-form solutions for the tuning problem, they are not
based on rigorous mathematical analysis. In [13], a MPC
tuning method is proposed to achieve closed-loop robust per-
formance based on state estimation and sensitivity functions,
where choosing a large enough control horizon is suggested.
There are several results available on MPC tuning based on
numerical optimisation techniques. An online DMC tuning
methodology is presented in [14] based on a constrained
least square optimisation that tunes parameters to satisfy
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a predefined closed-loop time domain performance. A tun-
ing procedure to achieve desired closed-loop performance
is proposed in [15], where the weight matrices and control
horizon are tuned using a convex optimisation approach. It
is assumed that the control horizon is fixed to one, as a
constraint to solve the optimisation problem. In [16], an
inverse-engineering-based methodology is used to find the
cost function and state estimator used in MPC. This is sub-
sequently extended in [17] to give a new tuning method for
MPC. In [18], two methods for selecting the MPC weight
matrices that result in linear state feedback controllers are
derived, where multivariable controllers are considered and
linear matrix inequality (LMI) methods solve the inverse
problem of the controller matching which numerically tunes
the weight matrices. Finally, in a recent research [19], a
tuning strategy for multi-parametric predictive controller is
developed. The controller tuning is based on local linear
analysis of the closed-loop system.

In this paper, a new analytical method for MPC tun-
ing is proposed when the constraints are inactive. Stable
FOPDT models are considered and closed-loop transfer
functions are obtained. Then, the tuning problem is restated
as a pole placement problem. To derive exact tuning for-
mulas with guaranteed closed-loop stability and desired
performance specifications, control horizons of one and two
are considered, respectively. In addition, simulation stud-
ies are performed to further study the closed-loop properties
with control horizons greater than two. In the case of no
active constraints, analytical tuning equations are obtained
and achievable performance for the closed-loop system is
addressed. It is shown that the closed-loop plant with control
horizon of two can achieve the maximum achievable desired
performance. That is, the MPC performance for FOPDT
plants does not improve by increasing the control horizon.
This performance is defined as the feasible performance and
helps to maintain the least computational cost by avoiding
higher control horizons. Higher order plants approximated
by FOPDT models are also considered. Finally, simulation
results are used to show the effectiveness of the proposed
tuning methodology for the FOPDT and higher order plants.
The paper is organised as follows: In Section 2, the state-
space MPC formulation for FOPDT plants is given and
closed-loop transfer functions are obtained. Higher order
plants described by FOPDT models and DMC for FOPDT
models are also considered. Section 3 provides the analyt-
ical MPC tuning equations. The efficiency of the proposed
tuning algorithms is analysed through examples in Section
4. Finally, Section 5 ends the paper with concluding results.

2 MPC formulation for FOPDT models

In this section, a standard structure for constrained MPC of
FOPDT models is given. The state-space model is consid-
ered and in the case of no active constraints, the closed-loop
transfer function is obtained. Finally, the closed-loop trans-
fer function in the case of higher order plants described by
FOPDT models is considered.

2.1 State-space MPC formulation for FOPDT
models

Consider the following stable FOPDT model

Gm(s) = kpe−θs

τ s + 1
(1)
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and the corresponding discrete time model with a sampling
time Ts is

Gm(z−1) = kp(1 − a)z−k−1

1 − az−1
(2)

where a = e−Ts/τ ; the dead time is considered to be an inte-
ger multiple of the sampling time, that is, k = θ/Ts. The
augmented state-space model with integrator is as follows

x(n + 1) = Ax(n) + B�u(n)

ym(n) = Cx(n)
(3)

where � = 1 − z−1 and

x(n) = [
�ym(n) �ym(n + 1) · · · �ym(n + k) ym(n + k)

]T

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · a 0
0 0 0 · · · a 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, B = kp(1 − a)

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

C = [
0 −1 −1 · · · −1 1

]
(4)

The above realisation is both controllable and observable.
The finite optimal control problem is as follows

min
u(n)

(w(n) − y(n))TQ(w(n) − y(n)) + (�u(n))TR(�u(n))

s.t. umin ≤ u(n + i|n) ≤ umax, i = 0, 1, . . . , M − 1

ymin ≤ ŷ(n + j|n) ≤ ymax, j = N1, N1 + 1, . . . , N2

(5)

where

w(n) =

⎡
⎢⎢⎣

w(n)
w(n)

...
w(n)

⎤
⎥⎥⎦

P×1

, y(n) =

⎡
⎢⎢⎣

ŷ(n + N1|n)
ŷ(n + N1 + 1|n)

...
ŷ(n + N2|n)

⎤
⎥⎥⎦

P×1

,

�u(n) =

⎡
⎢⎢⎣

�u(n)
�u(n + 1)

...
�u(n + M − 1)

⎤
⎥⎥⎦

M×1

Q =

⎡
⎢⎢⎢⎣

1 0 · · · 0

0 q2
. . .

...
...

. . .
. . . 0

0 · · · 0 qP

⎤
⎥⎥⎥⎦

P×P

,

R = k2
p (1 − a)2

⎡
⎢⎢⎢⎣

r1 0 · · · 0

0 r2
. . .

...
...

. . .
. . . 0

0 · · · 0 rM

⎤
⎥⎥⎥⎦

M×M

(6)

Note that N1 = k + 1, N2 = k + P, where P is the prediction
horizon, M is the control horizon and ŷ(·|n) is the predicted
value of plant output at instance n and the weight on control
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effort is normalised. Denote the future output values as

y(n) = Fx(n) + S�u(n) (7)

where

F =

⎡
⎢⎢⎢⎣

CAk+1

CAk+2

...
CAk+P

⎤
⎥⎥⎥⎦

P×(k+2)

,

S =

⎡
⎢⎢⎢⎣

CAkB 0 0 0
CAk+1B CAkB 0 0

...
...

. . .
...

CAk+P−1B CAk+P−2B · · · CAk+P−M B

⎤
⎥⎥⎥⎦

P×M

(8)

According to (4) and (8), we have

F = [
F1 F2 · · · Fk Fk+1 Fk+2

]
F1 = F2 = · · · = Fk = 0P×1,

Fk+1 = a

⎡
⎢⎢⎣

1
1 + a

...
1 + a + · · · + aP−2 + aP−1

⎤
⎥⎥⎦

P×1

, Fk+2 = 1P×1

(see (9))
where 1P×1 = [ 1 1 ··· 1 ]T. In the case of no active constraints,
the optimal control effort solution is

�u(n) = (R + STQS)−1STQ(1P×1w(n)

− Fk+1�ŷ(n + k) − 1P×1ŷ(n + k)) (10)

where ŷ(n + k) is the real output prediction.

ŷ(n + k) = akym(n) + kp(1 − a)(ak−1u(n − k) + · · ·
+ au(n − 2) + u(n − 1)) + d(n) (11)

where
d(n) = yp(n) − ym(n) (12)

where yp(·) is the plant output. Mathematical operations
on (10) lead to

�u(n) = K y

(
w(n) − ŷ(n + k)

)− K x�ŷ(n + k) (13)

where

K x =

⎡
⎢⎢⎣

Kx1

Kx2
...

KxM

⎤
⎥⎥⎦ = (

R + STQS
)−1

STQFk+1,

K y =

⎡
⎢⎢⎣

Ky1

Ky2
...

KyM

⎤
⎥⎥⎦ = (R + STQS)−1STQ1P×1 (14)
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Fig. 1 Block diagram of the closed-loop plant

Now, the current control effort is obtained as follows

�u(n) = Ky1(w(n) − ŷ(n + k)) − Kx1�ŷ(n + k) (15)

The block diagram of the proposed control configuration is
shown in Fig. 1.

2.1.1 Closed-loop plant analysis: Let d(n) = 0,
that is the plant and model outputs are the same.
Using (2), (11), (12) and (15), it can be shown that the
closed-loop transfer function is

Gcl(z) = K ′
y1

zk−1[z2 + z(−1 − a + K ′
x1 + K ′

y1) + (a − K ′
x1)]

(16)
where

K ′
x1 = kp(1 − a)Kx1, K ′

y1 = kp(1 − a)Ky1 (17)

Note that in the case of no model mismatch and no active
constraints, MPC of the FOPDT model (2) is a SOPDT
transfer function.

Lemma 1: The closed-loop plant (16) is stable if

K ′
y1 > 0, 2(1 + a − K ′

x1) > K ′
y1, a − 1 < K ′

x1 < a + 1
(18)

Proof: Direct application of the Jury’s test [20] proves the
result. The stability plot of K ′

y1 against K ′
x1 is illustrated in

Fig. 2.
Note that the desired closed-loop performance is achiev-

able by properly selecting the gains K ′
x1 and K ′

y1. �
S = kp(1 − a)

⎡
⎢⎢⎣

1 0 0 0
1 + a 1 0 0

...
...

. . .
...

1 + a + · · · + aP−1 1 + a + · · · + aP−2 · · · 1 + a + · · · + aP−M

⎤
⎥⎥⎦

P×M

(9)
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Fig. 2 Stability region for K ′
x1 and K ′

y1

Note 1: In the case of higher order plants, the real plant
can be described as follows

Gp(z
−1) = yp(n)

u(n)
= N (z−1)

D(z−1)
(19)

and the model employed for the predictive control design is

Gm(z−1) = ym(n)

u(n)
= kp(1 − a)z−k−1

1 − az−1
(20)

Equation (11) gives

ŷ(n + k) = akym(n) + kp(1 − a)z−1

(
1 − akz−k

1 − az−1

)
u(n)+d(n)

(21)
we have

d(n) = yp(n) − ym(n) =
(

N (z−1)

D(z−1)
− kp(1 − a)z−k−1

1 − az−1

)
u(n)

(22)
which gives

ŷ(n + k) = yp(n)

(
1 + kp(1 − a)

z−1 − z−k−1

1 − az−1

D(z−1)

N (z−1)

)
(23)

Now (15) and (23) leads to

�u(n) = Ky1w(n)

+ yp(n)

(
1 + kp(1 − a)

z−1 − z−k−1

1 − az−1

D(z−1)

N (z−1)

)
× (Ky1 + (1 − z−1)Kx1) (24)

Finally, the closed-loop transfer function is derived as
follows

Gcl(z) = K ′
y1(1 − az−1)N (z−1)

�cl(z−1)
(25)

where

�cl(z
−1) = kp(1 − a)(1 − z−1)(1 − az−1)D(z−1)

+ {(1 − az−1)N (z−1)

+ kp(1 − a)D(z−1)(z−1 − z−k−1)}
× (K ′

y1 + (1 − z−1)K ′
x1) (26)
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The closed-loop transfer functions (16) and (25) devel-
oped in the above sections are used to derive exact tuning
formulas for MPC of FOPDT models in the next section.

Note 2: In the case of DMC, we have

�u(n) =
k+P∑

i=k+1

ci (w(n + j) − f (n + i)) (27)

where ci denotes the ith first row elements of the matrix
(GTG + λI )−1GT, G is the dynamic matrix and λ is the
weighting on the control effort. Also, f is the free response
part of the output prediction. We have

f (n + j) = yp(n) +
N−1∑
j=1

ci(gi+j − gj)�u(n − j) (28)

where N is the model horizon and gi is the ith unit step
response coefficient of the model

�u(n) =
k+P∑

i=k+1

ci(w(n) − yp(n))

−
k+P∑

i=k+1

ci

N−1∑
j=1

(gi+j − gj)�u(n − j) (29)

which gives

�u(n)

(
1 +

k+P∑
i=k+1

ci

N−1∑
j=1

(
gi+j − gj

)
z−j

)
=

k+P∑
i=k+1

cie(n) (30)

where e(n) = w(n) − yp(n). The DMC transfer function is

u(n)

e(n)
=

∑k+P
i=k+1 ci

(1 − z−1)(1 +∑k+P
i=k+1 ci

∑N−1
j=1 (gi+j − gj)z−j)

(31)

which yields the following closed-loop transfer function

Gcl(z) = kp(1 − a)z−k−1
∑k+P

i=k+1 ci

�cl(z−1)
(32)

where

�cl(z
−1)

= (1 − az−1)(1 − z−1)

(
1 +

k+P∑
i=k+1

ci

N−1∑
j=1

(gi+j − gj)z
−j

)

+ kp(1 − a)z−k−1
k+P∑

i=k+1

ci (33)

For the unit step response coefficients of the FOPDT
model (2), we have

gj =
{

kp(1 − aj−k), j > k
0, j ≤ k

(34)
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Several mathematical manipulations yield (see Appendix 1)

�cl(z
−1)

= 1 + z−1

(
−1 − a + kp

k+P∑
i=k+1

ci − kpa1−k
k+P∑

i=k+1

cia
i

)

+ z−2

(
a − kpa

k+P∑
i=k+1

ci + kpa1−k
k+P∑

i=k+1

cia
i

)
(35)

Comparing (32), (35), (16) and (17) leads to

K ′
y1 = kp(1 − a)

k+P∑
i=k+1

ci

K ′
x1 = kpa

k+P∑
i=k+1

ci − kpa1−k
k+P∑

i=k+1

cia
i

(36)

So

k+P∑
i=k+1

ci = First element of {(R + STQS)−1STQ1P×1}

a
∑k+P

i=k+1 ci(1 − ai−k)

1 − a

= First element of {(R + STQS)−1STQFk+1} (37)

Note 3: The structure of a predictive proportional-integral
(PI) controller, where the Smith predictor is combined with
the PI controller, which is given in [21] and is similar to
the proposed MPC formulation for the FOPDT models. The
results proved in Section 2.1 are the backbones for derivation
of MPC analytical tuning formulations for FOPDT models.
However, it can be shown that based on the results of [21]
the closed-loop transfer function for FOPDT model is

Gcl(z) = z(K ′
x1 + K ′

y1) − K ′
x1

zk [z2 + z(−1 − a + K ′
x1 + K ′

y1) + (a − K ′
x1)]

which is similar to (16).

3 Tuning formulas for the MPC

In this section, when there are no active constraints the tun-
ing formulas for the MPC are derived and the resulted con-
trol structure is analysed. The tuning formulas are derived
for the two separate cases of control horizons of M = 1 and
M = 2.

Using (16), it is possible to place the closed-loop poles
in desired positions by appropriately choosing the desired
gains K ′

xd1 and K ′
yd1. This leads to analytical equations for

tuning parameters and determines the possible attainable per-
formance for the MPC of FOPDT plants. It is obvious from
the closed-loop transfer function (16) that the desired gains
K ′

xd1 and K ′
yd1 can lead to the desired performance. How-

ever, it is important to note that not any desired performance
is feasible. In what follows, the key feasibility concept is
considered and relevant theorems are introduced.

The tuning parameters are Q, R, P and M , where Q
is a diagonal positive semi-definite matrix, R is a diago-
nal positive-definite matrix, P and M are natural numbers,
and the sampling time is assumed fixed and appropriately
chosen.
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Definition 1 (Feasible gains): The desired gains K ′
xd1 and

K ′
yd1 that satisfy (14) and (17) are called the feasible gains.
Note that the gains are selected prior to (14) and (17). If

these gains are feasible, then there exits Q, R, P and M
that satisfy (14) and subsequently (17). However, there may
not exist such parameters, in which case the gains would be
infeasible.

3.1 Control horizon of one

Consider the control horizon of one in (14). It is easily
shown that

Kx1 = (R + STQS)−1STQFk+1 = 1

kp(1 − a)

aX

X + r

Ky1 = (R + STQS)−1STQ1p×1 = 1

kp(1 − a)

Y

X + r

(38)

where

X = 1 + q2(1 + a)2 + q3(1 + a + a2)2 + · · ·
+ qP(1 + a + · · · + aP−1)2

Y = 1 + q2(1 + a) + q3(1 + a + a2) + · · ·
+ qP(1 + a + · · · + aP−1) (39)

Let K ′
xd1 and K ′

yd1 defined in (17) be the desired gains. Note
that these gains are attainable by tuning only two parameters.
It is known that in MPC tuning problem, the weight matrices
are more dominant on system performance than other tuning
parameters [8]. So, the weights on the cost function (5), that
is, q2, q3, . . . , qP and r are chosen as the tuning parameters.

Theorem 1: Let

Q =
[

I 0
0 qP

]
, R = k2

p (1 − a)2r (40)

where I and 0 have proper dimensions. In this case, the
desired feasible gains K ′

xd1 and K ′
yd1 for control horizon of

one satisfy the following inequalities

0 < K ′
yd1, 0 < K ′

xd1 < a,
1

a

1

X1
<

K ′
yd1

K ′
xd1

<
1

a

Y2

X2
(41)

By selecting qP and r as the tuning parameters, the tuning
equations for achieving these gains are

qP = Y2K ′
xd1 − aX2K ′

yd1

X1(aX1K ′
yd1 − K ′

xd1)

r = a − K ′
xd1

K ′
xd1

(X2 + qPX 2
1 ) (42)

where

X1 = 1 + a + · · · + aP−1

X2 = 1 + (1 + a)2 + (1 + a + a2)2 + · · ·
+ (1 + a + · · · + aP−2)2

Y2 = 1 + (1 + a) + (1 + a + a2) + · · ·
+ (1 + a + · · · + aP−2) (43)
IET Control Theory Appl., 2013, Vol. 7, Iss. 14, pp. 1806–1817
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Proof: Equations (17), (38) and (39) lead to

r = a − K ′
x1

K ′
x1

(X2 + qPX 2
1 )

a(X2 + qPX 2
1 )K ′

y1 = (Y2 + qPX1)K
′
x1

→ qP = Y2K ′
x1 − aX2K ′

y1

X1(aX1K ′
y1 − K ′

x1)

Note that r should be positive, so

a − K ′
x1

K ′
x1

> 0
0<a<1−−−−−→ 0 < K ′

x1 < a

and qP should be positive, therefore

Y2K ′
x1 − aX2K ′

y1

X1(aX1K ′
y1 − K ′

x1)
> 0 → Y2 − K ′

y1

K ′
x1

aX2 > 0,

K ′
y1

K ′
x1

aX1 − 1 > 0 → 1

a

1

X1
<

K ′
y1

K ′
x1

<
1

a

Y2

X2

�

Remark 1: The lower and upper limits of (K ′
yd1/K ′

xd1) deter-
mine the possible tuning region. Increasing the prediction
horizon, this region gets smaller.

Theorem 2: Consider the MPC problem with two coinci-
dence points N1 = k + 1 and N2 = k + P, that gives

Q =

⎡
⎢⎢⎢⎢⎣

1 0
0

. . .
0

0 qP

⎤
⎥⎥⎥⎥⎦ (44)

In this case, the desired feasible gains K ′
xd1 and K ′

yd1 satisfy
the following inequalities

0 < K ′
yd1, 0 < K ′

xd1 < a,
1

a

1

X1
<

K ′
yd1

K ′
xd1

<
1

a
(45)

and the tuning equations for achieving these gains are

qP = K ′
xd1 − aK ′

yd1

X1(K ′
yd1aX1 − K ′

xd1)

r = a − K ′
xd1

K ′
xd1

(1 + qPX 2
1 ) (46)

where X1 is as defined in (43).

Proof: Equations (38), (39) and (44) give

r = a − K ′
x1

K ′
x1

(1 + qPX 2
1 )

a(X2 + qPX 2
1 )K ′

y1 = (1 + qPX1)K
′
x1

→ qP = K ′
x1 − aK ′

y1

X1(aX1K ′
y1 − K ′

x1)

The positivity of r and qP easily show the results. �
IET Control Theory Appl., 2013, Vol. 7, Iss. 14, pp. 1806–1817
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Corollary 1: In the case of infinite prediction horizon in
Theorem 2, the maximum area of feasible gains is given
by the following inequalities

0 < K ′
yd1, 0 < K ′

xd1 < a,
1 − a

a
<

K ′
yd1

K ′
xd1

<
1

a
(47)

Proof: Equations (43) and (45) and the assumption of P →
∞ completes the proof. �

Remark 2: In Theorem 2, any other choice for coincidence
points leads to smaller feasibility areas.

3.2 Control horizon of two

In this section, the control horizon of two in (10) is consid-
ered, where the weights on control efforts are the selected
tuning parameters. We have

K x =
[

Kx1

Kx2

]
= (R + STQS)−1STQFk+1,

K y =
[

Ky1

Ky2

]
= (R + STQS)−1STQ1p×1 (48)

Using (17) and (48) yields

[
X11 + r1 X12

X12 X22 + r2

] [
K ′

x1 K ′
y1

K ′
x2 K ′

y2

]
=
[

aX11 Y11

aX12 Y22

]
(49)

where

X11 = 1 + q2(1 + a)2 + q3(1 + a + a2)2 + · · ·
+ qP(1 + a + · · · + aP−1)2

X12 = q2(1 + a) + q3(1 + a)(1 + a + a2) + · · ·
+ qP(1 + · · · + aP−2)(1 + · · · + aP−1)

X22 = q2 + q3(1 + a)2 + q4(1 + a + a2)2 + · · ·
+ qP(1 + a + · · · + aP−2)2

Y11 = 1 + q2(1 + a) + q3(1 + a + a2) + · · ·
+ qP(1 + a + · · · + aP−1)

Y22 = q2 + q3(1 + a) + q4(1 + a + a2) + · · ·
+ qP(1 + · · · + aP−2) (50)

Theorem 3: In the case of control horizon two, and consider-
ing the prediction error weights as arbitrary and the weights
on control efforts as the tuning parameters, the desired fea-
sible gains K ′

xd1 and K ′
yd1 satisfy the following inequalities

0 < K ′
yd1, 0 < K ′

xd1 < a,
1

a

Y11

X11
<

K ′
yd1

K ′
xd1

<
1

a
(51)

and the tuning equations for achieving these gains are

r1 = (Y11X12 − X11Y22)(a − K ′
xd1)

aX12K ′
yd1 − Y22K ′

xd1

,

r2 = (X22Y11 − X12Y22)(K ′
xd1 − aK ′

yd1)

aX11K ′
yd1 − Y11K ′

xd1

(52)
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Proof: Equation (49) gives

r1 = 1

K ′
x1

(aX11 − X11K ′
x1 − X12K ′

x2)

= 1

K ′
y1

(Y11 − X11K ′
y1 − X12K ′

y2)

r2 = 1

K ′
x2

(aX12 − X1K ′
x1 − X22K ′

x2)

= 1

K ′
y2

(Y22 − X12K ′
y1 − X22K ′

y2) (53)

so

aX11K ′
y1 − Y11K ′

x1 = X12(K
′
x2K ′

y1 − K ′
y2K ′

x1)

Y22K ′
x2 − aX12K ′

y2 = X12(K
′
x2K ′

y1 − K ′
y2K ′

x1)

Now K ′
y2 is calculated using the above equations as

K ′
y2 = aX11Y22K ′

y1−Y11Y22K ′
x1+Y11X12K ′

x1K ′
y1−aX11X12K ′

y1
2

X12(aX12K ′
y1 − Y22K ′

x1)

Then, the tuning equations for r1 and r2 are obtained by
manipulating (53) as

r1 = (X12Y11 − X11Y22)(a − K ′
x1)

aX12K ′
y1 − Y22K ′

x1

r2 = −K ′
x1(X12Y22 − X22Y11) + aK ′

y1(X11X22 − X2
12)

Y11K ′
x1 − aX11K ′

y1

It can be shown that X22Y11 − X12Y22 = X11X22 − X 2
12 (see

Appendix 1), so the tuning equation for r2 can be rewritten
as

r2 = (X22Y11 − X12Y22)(K ′
x1 − aK ′

y1)

aX11K ′
y1 − Y11K ′

x1

As R is a positive-definite matrix, we have from (52)

r1 = (Y11X12 − X11Y22)(a − K ′
x1)

aX12K ′
y1 − Y22K ′

x1

> 0 (54)

Using mathematical induction, we can show that X12Y11 −
X11Y22 > 0 (for more details see Appendix 1). Thus, the
following sets of inequalities satisfy (54)

0 < K ′
x1 < a,

Y22

aX12
<

K ′
y1

K ′
x1

or K ′
x1 < 0,

K ′
y1

K ′
x1

< − Y22

aX12
or a < K ′

x1,
K ′

y1

K ′
x1

<
Y22

aX12
(55)

The positivity condition for r2 given by (52) leads to

r2 = (X22Y11 − X12Y22)(K ′
x1 − aK ′

y1)

aX11K ′
y1 − Y11K ′

x1

> 0 (56)

Again by induction, we can show that X22Y11 − X12Y22 > 0
(see Appendix 1) and hence

0 < K ′
x1,

1

a

Y11

X11
<

K ′
y1

K ′
x1

<
1

a
(57)

Note that (Y11/X11) < 1 (see Appendix 1) so there is no other
solution. The intersection of (54) and (57) with regards to
1812
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(Y22/X12) < (Y11/X11) and (Y22/X12) < 1 (see Appendix 1)
leads to

0 < K ′
x1 < a, 0 < K ′

y1,
1

a

Y11

X11
<

K ′
y1

K ′
x1

<
1

a �

Corollary 2: In the case of infinite prediction horizon and
qi = 1, i = 1, 2, . . . , P in Theorem 3, the maximum feasibil-
ity area is the same as (47).

Proof: By the assumption of P → ∞ and qi = 1, i =
1, 2, . . . , P in (51), the assertion follows. �

Remark 3: The maximum area of feasible gains with con-
trol horizons one and two are identical, and therefore the
achievable performances are the same.

Theorem 4: Consider the MPC problem with two coinci-
dence points N1 = k + i, N2 = k + j and 1 ≤ i < j ≤ P. Let
the control horizon be 2. The desired feasible gains K ′

xd1 and
K ′

yd1 satisfy the following inequalities

0 < K ′
xd1 < a, 0 < K ′

yd1,
1

a

Ȳ11

X̄11

<
K ′

yd1

K ′
xd1

<
1

a
(58)

and the tuning equations for achieving these gains are

r1 = (Ȳ11X̄12 − X̄11Ȳ22)(a − K ′
xd1)

aX̄12K ′
yd1 − Ȳ22K ′

xd1

,

r2 = (X̄22Ȳ11 − X̄12Ȳ22)(K ′
xd1 − aK ′

yd1)

aX̄11K ′
yd1 − Ȳ11K ′

xd1

(59)

where

Xi1 = 1 + a + · · · + ai−1, Xi2 = 1 + a + · · · + ai−2,

Xj1 = 1 + a + · · · + aj−1, Xj2 = 1 + a + · · · + aj−2

X̄11 = X 2
i1 + qjX

2
j1, X̄12 = Xi1Xi2 + qjXj1Xj2,

X̄22 = X 2
i2 + qjX

2
j2

Ȳ11 = Xi1 + qjXj1, Ȳ22 = Xi2 + qjXj2 (60)

Proof: The proof is evident from the results of Theorem 3
and the assumptions. �

Remark 4: By considering large enough j and qj in
Theorem 4, the maximum feasibility area (47) is achieved.

To derive similar results for the control horizons of
3, 4, . . ., the mathematical formulas become extremely com-
plicated. However, to study these cases, the following design
experiment is performed. For the control horizon of 3, let
r1, r2, r3 and P be tunable parameters. Select these weight
parameters randomly in the interval [0.001 10000] and the
prediction horizon in the interval [3 200]. Then, K ′

x1 and
K ′

y1 are calculated via (17). This test is performed several
times with different tuning parameters. Fig. 3 shows the
achievable area for these gains.

Note that the dashed line shows the maximum area of
feasibility in (47). This test is repeated for control horizons
of 4 and 5, and similar results are obtained. This clearly
shows that increasing the control horizon beyond 2 does not
improve the performance of the MPC for FOPDT models.
Referring to note 1, it is noted that these results holds for
higher order plants described by FOPDT models.
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Fig. 3 Maximum feasibility area

3.3 Tuning algorithm

In this section, the above theoretical results are sum-
marised in a tuning algorithm for practical applications. The
algorithm is as follows:

Step 1: Derive a proper FOPDT model of the plant in the
form of (2).
Step 2: If the model has enough accuracy, then go to step
4 else go to the next step.
Step 3: Find the appropriate gains K ′

x1 and K ′
y1 according

to (25). Go to Step 5.
Step 4: Find the appropriate gains K ′

x1 and K ′
y1 according

to (16).
Step 5: Test the feasibility of these gains in the maximum
feasible area (47). If it is satisfied then go to the next step, if
not go back to steps 3 or 4 depending on the accuracy of the
FOPDT model and choose another proper desired gains and
repeat these steps. If there are no desired gains that satisfy
the maximum feasibility conditions, the desired performance
is not achievable with the proposed method.
Step 6: Test the control horizon of one (Theorem 1 or 2).
Find the proper prediction horizon P such that (41) or (45)
is satisfied. If no such P exists go to next step, otherwise
use (40) or (44). The procedure is completed.
Step 7: Test the control horizon of two (Theorem 3 or 4).
Find the proper prediction horizon P such that (51) or (58)
is satisfied. Use (52) or (59). The procedure is terminated.

4 Simulation results

In this section, two examples are presented to show the
effectiveness of the proposed tuning methods. In the first
example, an FOPDT plant is considered and in the sec-
ond example, a high order plant is employed to verify the
theorems and the tuning algorithm.

4.1 FOPDT plant

Consider the following FOPDT plant [5]

Gp(s) = Gm(s) = 1.5e−4s

10s + 1
IET Control Theory Appl., 2013, Vol. 7, Iss. 14, pp. 1806–1817
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Fig. 4 Desired and feasibility regions of the gains

Let Ts = 1 s, the corresponding discrete transfer function is

Gp(z
−1) = Gm(z−1) = 0.1425z−5

1 − 0.905z−1

The desired closed-loop performance has a maximum over-
shoot of 10% and a settling time of 14 s up to 24 s and the
corresponding transfer function is

Gd(s) = ω2
ne−4s

s2 + 2ξωns + ω2
n

where 0.6 ≤ ξ ≤ 1 and 0.2 ≤ ξωn ≤ 0.4. Comparing Gd(s)
and the closed-loop transfer function (16), the desired gains
lie in the region shown in Fig. 4. It is obvious that the desired
gains are in the feasible region and the desired performance
is achievable. Hence, select K ′

xd1 = 0.3 and K ′
yd1 = 0.1. Let

the input and output constraints be |u(n)| ≤ 1.4 and |y(n)| ≤
1.5, respectively.

Considering the conditions of Theorem 1, (41) gives

4 ≤ P ≤ 6

Let P = 5, then N1 = 5, N2 = 9. The tuning equations
according to (42) are as follows

qP = 1.8

r = 110.55
(6)−−−−→ R = k2

p (1 − a)2 = 2.25

Now according to Theorem 2 and (45), we have

P ≥ 4

Let P = 5, hence we have N1 = 5, N2 = 9. The tuning
equations according to (46) are as follows

qP = 0.68

r = 25.53
(6)−−−−→ R = k2

p (1 − a)2 = 0.52

Now the control horizon of two is considered. Let

Q =

⎡
⎢⎢⎣

1 0
. . .

1
0 qP

⎤
⎥⎥⎦
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Fig. 5 Closed-loop responses, dotted line: desired response

According to (51), a proper choice can be P = 5 and qP = 3,
and hence N1 = 5, N2 = 9. Tuning weights according to (52)
are

r1 = 75.24, r2 = 45.02

(6)−−−−→ R = k2
p (1 − a)2

[
r1 0
0 r2

]
=
[

1.53 0
0 0.91

]

In Theorem 4, the proper choices using (58) are P = 5 and
qP = 3, and hence N1 = 5, N2 = 9. Also, (59) leads to

r1 = 25.53, r2 = 10.6

(6)−−−−→ R = k2
p (1 − a)2

[
r1 0
0 r2

]
=
[

0.52 0
0 0.22

]

Fig. 5 shows the closed-loop step response tracking results
with and without active constraints. Note that all of the
above tuning equations lead to the response dedicated in
Fig. 5.

4.2 Higher order plant

In this example, a higher order plant is considered [8]

Gp(s) = e−50s

(150s + 1)(25s + 1)

A proper FOPDT model approximation of the above transfer
function is

Gm(s) = e−70s

157s + 1
Let Ts = 14 s, so the corresponding discrete time transfer
functions are

Gm(z−1) = 0.085z−6

1 − 0.915z−1
of Engineering and Technology 2013
and

Gp(z
−1) = z−4 0.00438 + 0.0288z−1 + 0.00504z−2

1 − 1.482z−1 + 0.5203z−2

Hence, the closed-loop transfer function (25) is

Gcl(z) = K ′
yd1z2(0.0044z3 + 0.0248z2 − 0.0213z − 0.0046)

�cl(z)

where

�cl(z) = z9(0.0853)

+ z8(−0.2897 + 0.0853(K ′
xd1 + K ′

yd1))

+ z7(0.3645 − 0.2117K ′
xd1 − 0.1264K ′

yd1)

+ z6(−0.2006 + 0.1708K ′
xd1 + 0.0444K ′

yd1)

+ z5(0.0406 − 0.0400K ′
xd1 + 0.0044K ′

yd1)

+ z4(0.0204K ′
xd1 + 0.0248K ′

yd1)

+ z3(−0.1314K ′
xd1 − 0.1066K ′

yd1)

+ z2(0.2284K ′
xd1 + 0.1218K ′

yd1)

+ z(−0.1662K ′
xd1 − 0.0444K ′

yd1) + 0.0444K ′
xd1

The stability region of the closed-loop characteristic poly-
nomial is as shown in Fig. 6.

In the next step, the desired performance is considered.
The desired performance has no overshoot and a settling
time of less than 400 s. Simulation results are used to find
the proper gains K ′

x1 and K ′
y1 that satisfy the desired perfor-

mance. The desired gains that yield the desired performance
are illustrated in Fig. 7. Note that the desired performance is
in the feasible area and, therefore, a proper tuning set exists
to ensure closed-loop stability and performance. Consider
the input constraint |u(n)| ≤ 2.3.
IET Control Theory Appl., 2013, Vol. 7, Iss. 14, pp. 1806–1817
doi: 10.1049/iet-cta.2012.0934



www.ietdl.org
Fig. 6 Stability region

Fig. 7 Desired and feasibility areas of the gains
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Using Fig. 7, we choose K ′
xd1 = 0.25 and K ′

yd1 = 0.04. To
obtain these gains, let qi = 1, i = 1 : P. The proper P should
be obtained according to (51), which gives

P ≥ 17

So P = 17 can be a good choice, and hence N1 = 6, N2 =
22. Employing (52) gives

r1 = 1075.8, r2 = 828.1

(6)−−−−→ R = k2
p (1 − a)2

[
r1 0
0 r2

]
=
[

7.83 0
0 6.03

]

Fig. 8 shows the closed-loop step responses. Note that, in
the case of no active constraints the output has no overshoot
and the settling time is about 350 s.

5 Conclusions

A tuning strategy is developed for single-input single-output
MPC of FOPDT models when constraints are inactive.
The closed-loop transfer functions are obtained and sub-
sequently, the stability and achievable performances are
addressed. Tuning formulas to attain the desired perfor-
mances are derived. It is shown that for FOPDT plants, the
best achievable performance can be accomplished with a
control horizon of two, which greatly simplify the controller
structure. Plants of higher order modelled by a FOPDT trans-
fer function are also considered. Finally, simulation results
are used to show the effectiveness of the proposed tuning
method.
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8 Appendix 1

Several mathematical manipulations on (33) lead to (35).
We have

N−1∑
j=1

(gi+j − gj)z
−j =

N−1∑
j=1

gi+jz
−j −

N−1∑
j=k+1

gjz
−j

= kp

⎧⎨
⎩

N−1∑
j=1

z−j −
N−1∑

j=k+1

z−j −
N−1∑
j=1

ai+j−k z−j +
N−1∑

j=k+1

aj−k z−j

⎫⎬
⎭

= kp

⎧⎨
⎩

k∑
j=1

z−j −
N−1∑
j=1

ai+j−k z−j +
N−1∑

j=k+1

aj−k z−j

⎫⎬
⎭
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For large enough model horizon N , this gives

(1 − az−1)(1 − z−1)

N−1∑
j=1

(gi+j − gj)z
−j

= kp(1 − az−1)(1 − z−1)

(
k∑

j=1

z−j −
N−1∑
j=1

ai+j−k z−j

+
N−1∑

j=k+1

aj−k z−j

⎞
⎠ = kp((1 − az−1)(z−1 − z−k−1)

+ (1 − z−1)(−ai+1−k z−1 + az−k−1))

= kp(z
−1 − az−2 − (1 − a)z−k−1

+ (1 − z−1)z−1(−ai+1−k + az−k))

hence

�cl(z
−1)

= kp(z
−1 − az−2 − (1 − a)z−k−1)

k+p∑
i=k+1

ci

− kp(1 − z−1)z−1a1−k

k+p∑
i=k+1

cia
i

+ kp(1 − a)z−k−1

k+p∑
i=k+1

ci

= 1 + z−1

(
−1 − a + kp

k+p∑
i=k+1

ci − kpa1−k

k+p∑
i=k+1

cia
i

)

+ z−2

(
a − akp

k+p∑
i=k+1

ci + kpa1−k

k+p∑
i=k+1

cia
i

)

To prove the inequalities and equalities of Section 3, let

X11(P) = 1 + q2(1 + a)2 + q3(1 + a + a2)2 + · · ·
+ qP(1 + a + · · · + aP−1)2

X12(P) = q2(1 + a) + q3(1 + a)(1 + a + a2) + · · ·
+ qP(1 + · · · + aP−2)(1 + · · · + aP−1)

X22(P) = q2 + q3(1 + a)2 + q4(1 + a + a2)2 + · · ·
+ qP(1 + a + · · · + aP−2)2

Y11(P) = 1 + q2(1 + a) + q3(1 + a + a2) + · · ·
+ qP(1 + a + · · · + aP−1)

Y22(P) = q2 + q3(1 + a) + q4(1 + a + a2) + · · ·
+ qP(1 + · · · + aP−2) (61)

The proof of all inequalities and equalities are by induction,
showing that the truth of inequality or equality for P = n
leads to the truth of P = n + 1. According to the control
horizon of 2, the minimum prediction horizon is 2 and the
initial point is P = 2.

Proof of X11 > Y11: For P = 2

X11(2) = 1 + q2(1 + a)2 > Y11(2) = 1 + q2(1 + a)
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For P = n, we have

X11(n) > Y11(n)

For P = n + 1

X11(n + 1) = X11(n) + qn+1(1 + a + · · · + an)2

Y11(n + 1) = Y11(n) + qn+1(1 + a + · · · + an)

hence

(1 + a + · · · + an) > 1

So X11(n + 1) > Y11(n + 1) and the proof is completed. �

Proof of X12 > Y22: For P = 2

X12(2) = q2(1 + a) > Y22(2) = q2

For P = n, we have

X12(n) > Y22(n)

For P = n + 1

X12(n + 1) = X12(n) + qn+1(1 + · · · + an−1)(1 + · · · + an)

Y22(n + 1) = Y22(n) + qn+1(1 + a + · · · + an−1)

hence

(1 + a + · · · + an−1)(1 + a + · · · + an)

> (1 + a + · · · + an−1)

So X12(n + 1) > Y22(n + 1) and the proof is completed. �

Proof of X22Y11 − X12Y22 > 0: For P = 2

X22(2)Y11(2) − X12(2)Y22(2) = q2(1 + q2(1 + a))

− q2(1 + a)q2 = q2 > 0

For P = n, we have

X22(n)Y11(n) − X12(n)Y22(n) > 0

For P = n + 1

X22(n + 1)Y11(n + 1) − X12(n + 1)Y22(n + 1)

= X22(n)Y11(n) − X12(n)Y22(n)

+ qn+1

{
Y11(n)(1 + a + · · · + an−1)2

+ X22(n)(1 + a + · · · + an)

− Y22(n)(1 + · · · + an−1)(1 + · · · + an)

− X12(n)(1 + a + · · · + an−1)
}

= X22(n)Y11(n) − X12(n)Y22(n)

+ qn+1

{
n−1∑
j=0

(aj)2 +
n∑

i=2

qia
2(i−1)

n−i∑
j=0

(aj)2

}
(62)
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Note that
∑n−1

j=0 (aj)2 +∑n
i=2 qia2(i−1)

∑n−i
j=0(a

j)2 > 0, so the
assertion follows. �

Proof of X12Y11 − X11Y22 > 0: For P = 2

X12(2)Y11(2) − X11(2)Y22(2)

= q2(1 + a)(1 + q2(1 + a))

− (1 + q2(1 + a)2)q2 = q2a > 0

For P = n, we have

X12(n)Y11(n) − X11(n)Y22(n) > 0

For P = n + 1

X12(n + 1)Y1(n + 1) − X11(n + 1)Y22(n + 1)

= X12(n)Y11(n) − X11(n)Y22(n)

+ qn+1

{
Y11(n)(1 + · · · + an−1)(1 + · · · + an)

+ X12(n)(1 + · · · + an) − Y22(n)(1 + · · · + an)2

− X11(n)(1 + · · · + an−1)
}

= X12(n)Y11(n) − X11(n)Y22(n)

+ qn+1a

{
n−1∑
j=0

(aj)2 +
n∑

i=2

qia
2(i−1)

n−i∑
j=0

(aj)2

}

Note that a
∑n−1

j=0 (aj)2 + a
∑n

i=2 qia2(i−1)
∑n−i

j=0(a
j)2 > 0, so

the assertion follows. �

Proof of X22Y11 − X12Y22 = X11X22 − X 2
12: For P = 2

X22(2)Y11(2) − X12(2)Y22(2)

= q2 + q2
2(1 + a) − q2

2(1 + a)

= q2X11(2)X22(2) − X 2
12(2)

= q2 + q2
2(1 + a)2 − q2

2(1 + a)2 = q2

For P = n, we have

X22(n)Y11(n) − X12(n)Y22(n) = X11(n)X22(n) − X 2
12(n)

For P = n + 1

X11(n + 1)X22(n + 1) − X 2
12(n + 1)

= X11(n)X22(n) − X 2
12(n)

+ qn+1

{
X22(n)(1 + a + · · · + an)2

+ X11(n)(1 + a + · · · + an−1)2

− 2X12(n)(1 + · · · + an−1)(1 + · · · + an)
}

= X11(n)X22(n) − X 2
12(n)

+ qn+1

{
n−1∑
j=0

(aj)2 +
n∑

i=2

qia
2(i−1)

n−i∑
j=0

(aj)2

}

According to the (62) the statement follows. �
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